
Intro.

Many times during this course we start off with some intuition
about interesting phenomena, we model them, giving them a
representation that is friendly and manageable, and very often
we quantify the phenomena. Some math is of great importance
when it comes to representing and measuring.

Numbers.

If quantifying is part of what we do, we need to count. What
kind of numbers do we use?

0, 1, 2, . . .

the most natural kind of numbers you can think of for counting,
and their opposite

. . . ,−2,−1

and the ratio of any such numbers, for example
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So what is the rule for multiplying and dividing ratios? Let’s
consider these examples.
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÷5 = 3 · 2

3
÷ −1

3
÷5 = 3 · 2

3
· (−3) · 1

5
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3 · 2 · (−3)

3 · 5
=

−18

15

Functions.

We often look to understand what is the relation among some
variables. Is the value of a variable dependent on the value of
some other variable? For example, how much we consume can
be dependent on how much we earn, the amount of energy we
use up depends on how many light bulbs are switched on, and
so forth. That is the intuitive idea of what a function is.

Let’s consider this last case. The amount of energy con-
sumed e is a function l, the number of light bulbs that are
on,

e = f (l) ,

and if we know the nature of this function we can write it
down explicitly; for example, if we know that each light bulb
consumes 2 units of energy,

e = 2l.

Another example, ”My amount of happiness is a function of the
number of slices of pizza I eat, and even if I don’t eat any, I am
still pretty happy” could be represented as:

h = 2 + s.

Tables.

How do we approach the problem of understanding how the
function we are considering looks like. We can tabulate it. A
table is in fact an organized list of items and values. Let’s con-
sider again: the amount of energy consumed is a function of
the number of light bulbs that are on:

e = 2l.

And here is the table.

Number of light bulbs, l Total energy, e
0 0
1 2
2 4
3 6
4 8
...

...

But we cannot see patterns on a table. We need a tool that
is more intuitive and friendly: a graph.

Graphs.

A graph is a place where we can draw quantities. So if we have
a pair of values we can represent them in two dimensions, and
this is in fact the only type of graph we will deal with.

So if we have a bunch of pairs of values, we wish to repre-
sent them where it makes sense to do so. Hence, we need the
following elements: axes, labels of the axis, optionally unit of
measure of the variables at hand.

l

e

Explicit and implicit function, line.

The function is written down equating the two sides as in

h = 2 + s.

In this case one clearly sees that h is a function of s, as the
function is written explicitly, and one variable is independent,
while the other is dependent, as it derives its value from the
value of the independent variable. Here the same function is
written implicitly:

h− 2 − s = 0.

One cannot plot a function that is in its implicit form: the
function has to be put in its explicit form.

Now let’s draw
h = 2 + s.
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0 2
1 3
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3 5
4 6
...

...
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h

Now both these functions are plotted as lines, and therefore
we call them linear functions of simply lines. Why are they
lines? Because the variables vary proportionally in a fixed way.
For example, with

h = 2 + s

increasing the independent variable s of one unit, always yields
one additional unit of the dependent variable.

Some features of a line are very important: intercept and
slope; intercept is the value of the dependent variable, when
the independent variable is zero; the slope is the rise over the
run, that is, variation in the dependent variable over variation
in the independent variable.

Here we introduce a small piece of notation: ∆ stands for
variation, so that ∆x = x1−x0, where the convention is to take
final value minus initial value. Then, we can write the slope as

∆y

∆x
.

So, what are the slope and the intercept of h = 2 + s and
e = 2l?

Notice that the slope of a line is unique, it does not depend
on what points have been chosen to calculate it.

Total, margin, average.

Now let’s consider this table.

Number of light bulbs, l Total energy, e
1 1
2 4
3 9
4 16
5 25
...

...

And let’s graph it.
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We easily see that there is no single line that goes through
all the points: this bunch of points that we got from the table
and plotted, cannot have been generated by a linear function.

Total quantities are not the only thing we care about. In
fact we often want to know averages and margins. The con-
cept of margin is the variation of the dependent variable due
to a unitary change in the independent variable. The average
is obtained as the ratio of the total quantity of the dependent
variable over the quantity of the independent variable:

y

x
.

Let’s tabulate and plot these quantities in our example.

l e Average, a Margin, m
1 1 1 3
2 4 2 5
3 9 3 7
4 16 4 9
5 25 5
...

...
...

...
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It is interesting to notice the fact that the margin drives the
average.
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Area of a triangle, area under a curve.
We need to know how to compute the area of a triangle.

A H B

C

The rule is, base times height over two

area =
b · h

2
=

AB ·HC

2
.

A B

C

If the triangle is a right triangle we can take the product of
the legs divided by two

area =
l1 · l2

2
=

AB ·AC

2
.

This also allows us to calculate the area under a curve, or
between curves, if we can manage to decompose it into rectan-
gles and triangles.

As an example, we consider the following lines,

S : y − x− 1 = 0,

D : y + x− 5 = 0.

We plot them (if it helps tabulate them first)

x

S

D

and now we compute the area between the two lines, to the
left of their intersection.

x

A = (0, 1)

B = (0, 5)

C = (2, 3)H = (0, 3)

S

D

area = b · h/2 = AB ·HC/2 = 4 · 2/2 = 4.
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